
Journal of Global Optimization 8: 217-233, 1996. 217
© 1996 Kluwer Academic Publishers. Printed in the Netherlands.

A Hybrid Tabu-Ascent Algor i thm for the Linear
Bilevel Programming Problem

M. GENDREAU, P. MARCOTTE AND G. SAVARD
DIRO, Universitd de Montrgal, Montrdal, Canada H3C 3J7

marco t t e@i ro .umon t r ea l . ca

Received December 22, 1994; Revised August 25, 1995

A b s t r a c t . T h e l inear Bilevel P r o g r a m m i n g P r o b l e m (BLP) is an ins t ance of a l inear hierarchi-
cal decision process where t he lower level cons t ra in t set is d e p e n d e n t on decis ions t aken at the
uppe r level. In th is pape r we propose to solve th i s N P - h a r d p rob lem us ing an adapt ive search
m e t h o d re la ted to t he T a b u Search metaheur i s t i c . Numer ica l resu l t s on large scale l inear B L P s
are presented.

K e y w o r d s : Bilevel p r o g r a m m i n g , adap t ive search m e t h o d s , combina to r ia l op t imiza t ion , T a b u
Search

1. I n t r o d u c t i o n

In this paper we address the numerical solution of the linear bilevel problem (BLP)
that consists in finding vectors x and y maximizing the linear form clx + dly, under
the constraint that y be optimal for the lower level program 1 .

m a x d 2 z
Z

subject to A x + B z ~ b

z > 0 ,

where A is an m × n~ matr ix and B an m × ny matrix. The BLP is sometimes
recorded in the following format:

max c l x + d l y
X

max d2y
Y

subject to A x + B y < b

x ,y >_O.

(1)

The feasible region P = {(x, y)[Ax + By <_ b, x, y >_ 0} is, for simplicity, assumed
to be nonempty and bounded. Upon introduction of the multifunction R(x) that
associates to a vector x the set of optimal y-solutions to the lower level problem,
i.e.,

R(x) = argmax{d2y[By < b - Ax, y >_ 0},
Y

218 M. GENDREAU, P. MAI=tCOTTE AND G. SAVARD

the BLP can be rewritten as

max clx + dly
z , y

subject to A z + B y < b

z > 0

y e

Some sets play an important role in the theory of bilevel programming. We
denote by R the set of x-vectors for which the set R(x) is nonempty, and by D =
{AB _> d2, A > 0} the feasible set associated with the dual of the lower level linear
problem. Notice that D does not depend on the upper level vector x. The set
{(z, y) 6 Ply 6 R(x)} is usually referred to as the induced region.

This instance of a linear hierarchical problem was introduced by Candler and
Townsley [6], Bard and Falk [2] and Bialas and Karwan [5], who solved small test
problems. Jeroslow [12] showed that the BLP is NP-hard, while Vicente, Savard
and Jfidice [19] proved that the problem of obtaining a certificate of local optimality
for the BLP is also strongly NP-hard. Recently, Savard and Gauvin [17] proposed a
method for finding a local descent direction for nonlinear bilevel programs. When
applied to the BLP, the worst-case complexity of their algorithm is exponential,
unless the polyhedron P is nondegenerate. Well-known problems in combinatorial
optimization, such as the general linearly-constrained concave quadratic program-
ming problem, or instances of hard mixed-integer problems, can be polynomially
reduced to the BLP (see Hansen, Jaumard and Savard [10]).

Recently, some hope of solving larger problems has been raised, following the
works of Bard and Moore [4], Jfidice and Faustino [13] and Hansen, Jaumard and
Savard [10]. The methods proposed by these authors (branch-and-bound, variable
elimination, parametric complementarity pivoting) are of a combinatorial nature
and yield exponential-time algorithms. One aim of the present paper is to extend
the range of linear BLPs solvable to near-optimality by heuristic methods whose
computational growth rate is low. The proposed methodology involves a local
search akin to the Tabu Search introduced by Glover [7] [8] and under the termi-
nology "steepest ascent, mildest descent", by Hansen [9]. The idea of using local
search techniques for solving the BLP is not new. For example, Mathieu, Pittard
and Anandalingam [15] have proposed an adaptation of the simulated annealing
technique to the linear BLP. However, their approach could not address the large
problem instances dealt with in the current paper. A good bibliographic survey
of linear and nonlinear bilevel programming can be found in Vicente and Calamai
[18].

A side result of our analysis is the development of a primal-dual startup procedure
which performs exceptionally well. Frequently, the search phase could not improve
on the initial solution produced by the startup procedure. Whenever this favorable
situation occurred, we tried to check, using the exact algorithm of Hansen, Jaumard
and Savard [10], whether this initial solution was optimal. In most cases, it was.

A HYBRID TABU-ASCENT ALGORITHM 219

The paper is organized as follows: Section 2 is devoted to a description of the
algorithm, including the s tar tup procedure; Section 3 presents extensive numerical
tests; Section 4 concludes the paper.

2. T h e a l g o r i t h m

The algorithm is composed of three main building blocks: a startup phase, designed
to produce a good initial solution, a local ascent phase and a Tabu phase, whose
aim is to move away from and improve on the current locally optimal solution,
whenever possible. Each of these phases is described in more detail below.

2 . 1 . T h e i n i t i a l i z a t i o n p r o c e d u r e

For a given x in R, a vector y is optimal for the lower level problem if and only if
it satisfies, together with a dual vector ~:

By < b - Ax primal
y _> 0 feasibility

AB > d2 dual
> 0 feasibility

(AB - d2)y = 0 complementary
A(b - A z - By) = 0 slackness.

If one substitutes to the lower level program the above primal-dual optimality
conditions, one obtains the equivalent one-level formulation

max clx + dly
x,y~X

subject to A x + B y < b

x,y>_O

AB > d2

) , > 0

(AB - d2)y = 0

A(b - Ax - By) = O.

As in Anandalingam and White [1], we can penalize the complementari ty slack-
ness terms to obtain the linearly constrained single-level program

maxx,y,x clx + dly - M[(AB - d2)y + A(b - Ax - By)]

-- clx + dly + Md2y - M.X(b - Ax)

subject to Ax + B y < b (2)

220 M. GENDREAU, P. MAI:tCOTTE AND G. SAVARD

AB > b2.

x , y , A > 0

Whenever M is sufficiently large, the penalty is exact in the sense that problem (2)
and the original BLP (1) admit the same solution sets. If an optimal dual vector A
were known a priori, (2) would reduce to a standard linear program. Our heuristic
procedure estimates A in the simplest fashion by setting it, for a given upper level
vector z, to an optimal dual solution of the lower level problem. The penalized
problem is then solved with respect to the x and y-variables. If the resulting vector
y is not in R(x), the penalty parameter M is increased, and the procedure repeated.
The rationale behind this strategy is to generate a sequence of solutions converging
to an (x, y)-solution that satisfies the condition y • R(x), while favoring the upper
level's objective. This parametric scheme is reminiscent of Bard's efficient point
algorithm [3] which solves the bicriterion problem

max clx -b dly -k Md2y
~,y~0

subject to A x q - B y ~ b

for increasing values of the parameter M, until a rational point (~, y) with y in
R(z) is identified. This program is akin to (2). However this strategy always keeps
away from non Pareto-optimal maxima, either local or global (see Haurie, Savard
and White [11] for a discussion of this topic). This is due to the absence of the
correcting term M)~(b - Ax) of (2), and may lead to bad feasible solutions.

Our initialization algorithm, called Algorithm INIT, is described below:

A L G O R I T H M INIT

Step 0: Select a parameter AM and set M to 0.

Step 1: Let (x(M), y(M)) E argmax(~,y)ep {clx + dly --k M[d2y - A(M)(b - Ax)]}

Step 2: Let A(M) • arg mince D {A(b - Ax(M))}.

Step 3: i f d 2 y (M) - A(M)(b- A z (M)) = 0 t h e n go to Step 4
else set M = M + AM and GOTO Step 1.

Step 4: Output the solution (x(M), y(M)) .

At Step 2 of the algorithm, one solves the linear program

[]

A H Y B R I D T A B U - A S C E N T A L G O R I T H M 221

min d2y
y

subject to By <_ b - Ax(M)

y ~ 0 .

and obtains an optimal primal solution y(x(M)) as well as the optimal dual vector
),(M).

Some variants of Algorithm INIT have been implemented, but proved less ef-
fective, and were not retained. For instance, one could record the feasible solution
(x (i) , y(x(M))) yielding the highest objective value c l x (i) + d l y (x (i)) . This so-
lution might not be the one corresponding to the highest (last) value of the penalty
parameter M considered. One could also try, at a somewhat higher computational
cost, to solve more accurately the bilinear program corresponding to a given value
of the penalty parameter M. One should be aware, however, that this subproblem
is theoretically as hard to solve as the original bilevel program, and that one should
satisfy oneself with a local maximum. Such a local maximum could be obtained,
for example, by iteratively solving linear programs with respect to the (x, y) and)~
vectors, h la Gauss-Seidel.

The initialization phase is then completed by a local search step where pivots in
(x, y)-space that improve the leader's objective while leaving y in the induced region
R(x) are performed, until no (local) improvement can be found in this manner. This
procedure could halt before a local maximum is actually identified, since degenerate
pivots are not considered. If one demands that a local maximum be achieved, one
should be ready to explore all neighbors of the current vertex, of which there could
be exponentially many.
R emark : The lower level problem is generically highly degenerate. Indeed, the
optimal solution of BLP occurs at an extreme point of P. Consequently, a basic
solution vector y of the lower level problem must have at least k zero components,
where k is the number of nonzero components of the upper level decision vector,
including the slack variables associated with the constraints Ax -b By ~_ b. []

2.2. The T a b u phase

The aim of the Tabu phase of the algorithm is, starting at a point (x °, y0) on the
induced region, to determine another point (x +, y+) on the induced region such
that

clx + + dly + : ClX ° + dly °

(see Figure 1). The corresponding primal-dual nonconvex feasibility program is

ClX + + d l y + : clx °+ally °

Ax + + By + ~_ b

x +,y+,A + > 0 (3)

222 M. GENDREAU, P. MARCOTTE AND G. SAVARD

A+B > d2

A + (b - A x +) = d2y +.
(~+, y+) # (~o, yo)

If one introduces the gap function

one can rewrite (3) as

0 = global min
xpy

subject to

g (x , y) = max d2(z - y),
z]Bz<b-Ax,z>O

g(x, u)

clx + dly = clx ° + dly °

(~, y) ~ P
(~, u) # (~o, uo).

(4)

Notice that, unless (x °, y0) is already globally optimal for BLP, there exists at least
one solution to the system (3). The generic procedure is described below.

A L G O R I T H M T A B U

Step 1: (moving away from the current solution (z °, y0))

Through a pivot sequence, generate a point (x ~, y~) that is

(i) "far" from (x °, y0), and
(ii) achieves a "high" value of the gap function g.

Simultaneously record the relevant Tabu information.

Step 2: (searching for a point in the induced region)

Starting from (x', y'), try to solve the optimization problem (4)
by performing a sequence of Tabu moves.

[]

Note that the Tabu algorithm, being a heuristic procedure, could fail to find a
solution to (4), even if such a solution exists.

At Step 1 of algorithm TABU, we first move to a randomly selected adjacent
vertex (~, ~)) of (x °, y0) in the polyhedron

p(xO, yO) = {(x,y) E PlClX + d l y = clx ° + dly°}.

Next we maximize the squared distance

A HYBRID TABU-ASCENT ALGORITHM 223

x+y
1 Ae oooo

P (x O,yO) = [(x O,yO) , (x o ,yO)]

Figure 1. The Tabu cut.

II(x, - (x 0 0)112 (..5)

by performing one simplex step (pivot) for the linear program resulting from the
linearization of the convex function (5) at, the point (2, Y) (Frank-Wolfe direction-
finding linear program at (2, 9))- This process is repeated until a local max imum
of (5) is reached. Since the distance function (5) is convex, this process generates
a finite sequence of vertices of P(x °, yO).

The Tabu methodology comes into play at Step 2 of the algorithm. Three types
of Tabu tags are maintained throughout this phase: Tabus on entering variables,
Tabus on exiting variables and Tabus on pivots, i.e. pairs of entering and exiting
variables. The first, two sets of tags prevent the reversal of past moves, while the
third inhibits pivot repetitions. These Tabus remain active for a number of iter-
ations generated randomly and unifornfly within the intervals [_01n, 01hi, [0-0out,0out]
a n d [0_piv~0piv] ~ respectively.

Each iteration of the Tabu phase involves a move from a vertex of P(x °, yO) to an
adjacent vertex by means of a pivot operation. Only a subset of possible moves is
considered at each iteration: the candidate list is made up of the kl most promising
nonbasic variables obtained at the previous iteration, and is completed by selecting
k2 variables according to a cyclic management scheme. Hence, at each iteration,
the length of the candidate list is at most k = kl + k2. For each of these variables,
we compute a "merit score" defined as the sum of two terms: the gap value tha t
would result if the pivot were actually implemented and a penalty factor related to
the Tabu status of the corresponding move. For a pivot involving r as the entering

224 M. GENDREAU, P. MARCOTTE AND G. SAVARD

variable and s as the exiting variable, the penalty is given by the formula

l-~(r, 8) -- CX([tin (r) -- t] + -b [tout (8) -- t] "{- -[- 2[tpiv(r, 8) -- t]+),

where a is a penalty weight factor, whose value decreases from one to zero as the
number of Tabu iterations already performed increases, t is the current iteration
index, tin (r) the instant (iteration index) at which the variable r is to be removed
from the entering variables Tabu list, tout(S) the instant at which the variable s is
to be removed from the exiting variables Tabu list, tpiv(r, s) the instant at which
the pair (r, s) is removed from the pivot Tabu list, and [.]+ denotes the maximum
function:

[u] + = max(0, u).

Note that, at the beginning of the Tabu step, the instants tin (r), tout (s) and tpiv (r, s)
are set to zero for all indices r and s.

While scanning the list of candidate pivots, the first (r, s) pivot that satisfies
either of the following conditions is implemented:

1. (r, s) is not Tabu and decreases the gap.

2. (r, s) is Tabu and significantly decreases the gap (aspiration criterion). More
precisely, (r, s) is implemented if the gap resulting from the (r, s) pivot is less
than

x current gap x 1 maxiter '

where "maxiter" is the maximum number of pivots allowed in the Tabu phase
and t the current iteration index.

According to standard Tabu Search terminology, this second condition is called an
"aspiration criterion", in the sense that the Tabu status of a pivot can be overriden
if this allows the search to reach a particularly promising solution. If no pivot
meets the previous two requirements, then we select the pivot that minimizes the
previously defined merit score.

If, during the Tabu phase, the starting point (x °, y0) is rediscovered, the parame-
ters [~-in,~in], ~[-~ut,~out] and [-~piv, ~piv] are increased, and the process restarted. In
a symmetric fashion, if the gap value increases on two consecutive iterations, these
parameters are decreased.

Once the Tabu phase is successfully completed, we try to improve on (x +, y+),
using the heuristic algorithm TINI, which is nothing else than a reverse implemen-
tation of algorithm INIT, and is described below.

If the Tabu phase fails to discover a solution to (4) within "maxiter" pivots, the
overall procedure halts.

A L G O R I T H M T I N I

A HYBRID TABU-ASCENT ALGORITHM 225

Step 0: Select a parameter AM.
Set M to some suitably large value.
Let A(M) be an optimal dual vector corresponding
to the primal lower level vector (x +, y+).

Step I: Let (x(M), y(M)) E arg max(~,y)ep {clz + ally --b M[d2y - A(M)(b - Az)]}

Step 2: Let A(M) e arg minxeD {A(b - Az(M))}.

Step 3: ifd2y(M) - A(M)(b- A~(M)) • 0 t h e n go to Step 4
else set M = M - AM and GOTO Step 1.

Step 4: Output the feasible solution (x(M + AM), y(M q- AM)).

[]

At Step 0 of algorithm TINI, "suitably large" means that M is an exact penalty
parameter or, in other words, any solution of the program (2) achieves a null gap
value. Like algorithm INIT, algorithm TINI is completed by a local ascent proce-
dure.

The overall procedure is illustrated in Figure 2.

3. Numer ica l results

The algorithm has been programmed in the FORTRAN language on a workstation
HP730 operating under UNIX, and using Marsten's XMP linear programming code
[14] for solving the linear subproblems encountered throughout. On the smaller
problems, we could compare our algorithm against the exact algorithm of Hansen,
Jaumard and Savard [10] programmed within the same computing environment.
The exact algorithm of Hansen, Jaumard and Savard is currently one (if not "the")
most efficient method for solving unstructured BLPs.

Series of test problems with sizes ranging from 40 to 200 variables and 20 to
200 constraints, with both medium sparse and dense matrix structures, have been
solved. The problems were generated using a modification of Bard and Moore's
generator [4] adopted in [10].

The results of the experiments are presented in Tables 1 to 6. In Tables 1 to 4
the figures are averaged over groups of ten problem instances.

The meaning of the column headings is given below:

226 M. GENDREAU, P. MARCOTTE AND G. SAVARD

INIT

--q

Local
Ascent

FAILURE
TABU

SUtCES

TINI

) STOP

Local
Ascent

Figure 2. The hybrid Tabu-ascent algorithm

A HYBRID TABU-ASCENT ALGORITHM 227

Table l. Influence of the parameter "maxiter"

Problem parameters
n~ = 50 n u = 55

m = 42 DENS=I.0
_O= 11 ,~= 15
kl ---- 10 k = 55

maxiter NSUC NOPT WORST AVERAGE CPU1 CPU2/CPU1

55 3 6 97.59 99.37 12.82 22.88
110 6 7 98.16 99.71 28.70 10.22
220 6 9 98.00 99.80 64.16 4.57

HTA:
EXACT:

ny:

m:

DENS:
~:

maxiter:
NSUC:
NOPT:
WORST:
AVERAGE:
CPU0:

CPUI:
CPU2:
k:

kl:

OBJ:
OBJ0:

HEUR:

UPPER:

hybrid tabu-ascent algorithm
exact algorithm HJS
number of upper level variables
number of lower level variables
number of constraints
density of the constraint matrix [A [B]
common value of the parameters 0_in , 0_out, _0pi v
common value of the parameters 0in, 0out, Opiv
maximum number of iterations allowed in each Tabu phase
number of successful Tabu phases
number of problems solved to optimality
worst heuristic-to-optimal ratio
average heuristic-to-optimal ratio
CPU time associated with algorithm INIT
(including local search phase)
CPU time associated with the hybrid Tabu-ascent algorithm
CPU time associated with the exact algorithm HJS
length of the list of candidate variables, sorted
with respect to their respective merit scores
number of most promising variables kept from the previous
iteration in Tabu phase
value of first level objective
value of first level objective achieved by algorithm INIT
(including local ascent phase)
value of first level objective computed by HJS's initialization
procedure
initial upper bound on the first level objective.

The numerical experiments were conducted in two stages. We first performed a
series of tests to determine good values for the various parameters involved in the

228 M. GENDREAU, P. MARCOTTE AND G. SAVARD

Table 2. Influence of the parameter k

Problem parameters
n~ = 50 n~ = 55

m = 42 DENS=I.0
_0= 11,~= 15

kl = 10 maxiter=ll0

k NSUC NOPT WORST AVERAGE CPU1 CPU2/CPU1

27 3 5 97.59 99.20 16.85 17.41
55 6 7 98.16 99.71 28.70 10.22

105 4 6 97.84 99.43 39.99 7.33

Tabu phase of the algorithm. Problems with 50 upper level variables, 55 lower level
variables, 42 constraints and density of 100% were used for these tests. These are
difficult problems that are encountered in some practical situations; for instance,
the BLP formulation of the nonparametric discriminant analysis problem leads to
100% dense constraint matrices (see Marcotte and Savard [16]).

In algorithm INIT, we observed that the penalty became exact for values of M
ranging from 2 to 45. In algorithm TINI, the parameter M was initially set to 5, and
increased by increments of .5 until the penalty became exact. In both algorithms,
the value of AM was set to .5.

In Table 1 we assess the influence of the parameter "maxiter" on the performance
of the algorithm. As expected, the quality of the solution improves as "maxiter" and
CPU1 increase. However, it can be observed that increasing "maxiter" above the
value 110 (twice the number of second level variables) led to minute improvements
in the solution, while considerably increasing the computing time. In subsequent
tests, "maxiter" has been set equal to twice the number ny of lower level variables.

Some tests have also been conducted to determine a strategy for restricting the
number of pivots to be considered. We introduced two parameters: (i) k governs
the number of variables kept from the previous Tabu iteration, sorted with respect
to their merit scores; (ii) ki controls the number of variables from the previous list
of k variables to be evaluated in priority as entering variables. For each of these
two parameters, 3 different values were considered. The results are shown in Tables
2 and 3. Based on these results, the values k = ny and kl = 10 have been retained.
Note that the algorithm is quite insensitive to the value of the parameter kl. Also,
it proved unproductive to use the full list of variables; indeed, as k was increased
from 55 to 105, the computing time increases and the solution deteriorates.

We also conducted a sensitivity analysis on the length of the Tabu list. The
results are quite insensitive to this parameter. This behavior may be explained by
the self-adjustment of this parameter and the use of an aspiration criterion.

A HYBRID TABU-ASCENT ALGORITHM 229

Table 3. Influence of the parameter kl

Problem parameters
n= = 50 ny = 55

m = 42 DENS=I.0
_8= 1 1 , 8 = 15

k -- 55 maxiter=110

kt NSUC NOPT WORST AVERAGE CPU1 CPU2/CPU1

0 5 7 98.15 99.71 31.90 9.20
10 6 7 98.16 99.71 28.70 10.22
20 4 6 97.59 99.37 26.39 11.12

The main results are presented in Table 4, where we observe that the computing
time CPU1 of our algorithm increases superlinearly with respect to the size of
the problem, albeit at a much slower rate than the computing time CPU2 of the
exact procedure HJS. With the exception of the smaller problems, CPU1 is much
smaller than CPU2. An exact solution was obtained by the hybrid Tabu-ascent
algorithm in 184 out of 250 problems, corresponding to a success rate of 73.6%.
Even more impressive in our opinion is the fact that the relative error was, on the
average, inferior to .5% and that it was very seldom superior to 5%. All these
results were achieved in computing times 6 to 20 times faster than those of the
exact algorithm on all but the smallest test problems. In several instances, the
initialization algorithm INIT produced an optimal solution. In the next-to-last
series of test problems, the performance of our algorithm is actually superior (!)
to that of the exact algorithm. This is due to one extremely nasty instance of a
70 × 70 problem, which had to be halted when CPU2 exceeded the time limit value
set to 15 000 seconds.

Table 5 contains a detailed account of the series corresponding to the parameters
n~: -- 60, ny = 65, m = 50 and DENS= .4. The aggregated results for this
series have previously been presented at line - 4 of table 4. In five instances, the
best solution was achieved at the end of the initialization phase, and two of these
solutions are optimal. In the other five problems, where the Tabu phase actually
improved upon the initial solution, the optimal solution was reached. In the two
cases where the exact algorithm's computing time CPU2 was inferior to CPU1,
algorithm INIT produced either an optimal or a near optimal (within .03% from
optimality) solution. The computing times of algorithm INIT are reported in the
3rd column of Table 5. These figures are very low, except for the 4th instance,
where the lower level problem was highly degenerate. Finally we notice that the
coefficient of variation of the computing time CPU1 is very small, confirming the
stability of the algorithm.

M. GENDREAU. P. MARCOTTE AND G . SAVARD

Table 4. Main results.

Problem parameters
e = [ny/5] 8 = 8 + 4

kl = 10 k = ny maxiter=2ny

n, ny m DENS maxiter NSUC NOPT WORST AVERAGE CPUl CPU2

A HYBRID TABU-ASCENT ALGORITHM 231

Table 5. Detailed results.

Problem parameters
n~ = 60 ny = 65

m = 50 DENS=0.4
0__ = 13 0 = 17

kl = 10 k = 65 maxiter=130

HTA EXACT
OBJ0 CPU0 NSUC OBJ CPU1 HEUR UPPER OBJ CPU2

1 60.63 10.11 0 60.63 62.93 33.11 61.62 60.63 338.63
2 75.85 3.43 0 75.85 67.76 37.05 82.12 76.17 1257.61
3 75.16 5.20 2 76.38 96.97 39.96 81.61 76.38 793.65
4 64.17 80.08 1 65.28 142.84 33.65 68.10 65.28 579.28
5 79.00 7.64 1 79.93 54.95 63.25 82.14 79.93 551.09
6 79.47 1.79 0 79.47 31.07 43.05 79.84 79.47 6.00
7 62.24 3.53 1 62.26 81.79 44.71 62.38 62.26 47.27
8 84.18 8.95 0 84.18 52.75 34.82 91.15 85.20 11350.11
9 71.53 5.96 1 71.97 57.29 49.69 75.01 71.97 115.76
10 85.18 1.39 0 85.18 50.28 63.14 90.88 86.92 1959.94

Our last table (Table 6) contains the results of experiments performed on 10 large
problems, for which a time limit of one hour computing time was imposed on the
exact algorithm HJS. In all but one instance, the hybrid Tabu-ascent procedure
generated the best solutions, in less than 13 minutes. In the other instance (9th
problem), the solution values where identical, and the running times very similar.
In five instances, the best solution was obtained at the end of the initialization
phase, thus confirming the exceptional behavior of algorithm INIT completed by
the local search phase.

4. Conc lus ions

In this paper we presented a hybrid Tabu Search-ascent heuristic for the approxi-
mate solution of large linear bilevel programs. This method performed very well on a
large set of difficult test problems involving up to 200 variables and 200 constraints.
Optimal solutions were identified for the vast majority of these, and relative errors
were on the average extremely small. The computing times of the algorithm proved
to be low and stable, from one problem to the other.

An integral part of our algorithm is the primal-dual startup procedure INIT,
which performed beyond our expectations. Actually, INIT produced optimal or
near-optimal solutions in many cases. On the other hand, the Tabu phase of the
algorithm was successful in achieving its stated aim, that is, improving upon nonop-

232 M. GENDREAU, P. MARCOTTE AND G. SAVARD

Table 6. Results on large problems.

Problem parameters
n~ = 90 n~ = 100

m = 76 DENS=0.25
_0 = 2 0 0 = 2 4

kl -- 10 k = 100 maxi ter=200

H D T EXACT
OBJ0 NSUC OBJ CPU1 HEUR U P P E R OBJ CPU2

1 78.72 1 78.92 453.32 60.01 81.41 77.73 3600.00
2 118.02 0 118.02 274.72 89.28 118.37 116.67 3600.00
3 98.36 0 98.36 200.36 46.24 110.23 95.91 3600.00
4 80.96 0 80.96 331.11 53.00 89.91 77.87 3600.00
5 71.37 1 71.42 358.74 59.04 72.70 71.42 3600.00
6 92.85 1 96.90 752.22 68.03 100.87 93.17 3600.00
7 69.14 1 70.15 604.44 31.68 73.07 69.54 3600.00
8 92.54 0 92.54 183.21 60.41 94.40 80.50 3600.00
9 92.99 0 92.99 257.59 83.62 93.59 92.99 228.21
10 120.01 1 122.55 679.77 82.58 124.77 107.70 3600.00

t imal initial solutions. In most cases where the s tar tup procedure did not find an
opt imal solution, the Tabu phase did.

Our results clearly demonstra te that hybrid methods combining ascent and Tabu
procedures can efficiently address difficult nonconvex or combinatorial opt imizat ion
problems such as the linear bilevel p rogramming problem. I t now remains to assess
the capabil i ty of our approach to tackle other classes of problems with similar
structures. In particular, we want to consider bilinear bilevel programs of the form

m a x Tx
T

min (c + T)x + dy

Ax + By >_ b,

which arise in the context of opt imal pricing of commodities.

N o t e

1. Throughout the paper, left vectors (cost coefficients and dual vectors) are assumed to be row
vectors while right vectors (resource coefficients and primal vectors) are assumed to be column
vectors, thus eliminating the need for the transposition symbol.

A HYBRID TABU-ASCENT ALGORITHM 233

R e f e r e n c e s

1. Anandalingam, G. and White, D.J., A solution method for the linear static Staekelberg
problem using penalty]unctions, IEEE Transactions on Automatic Control, 35 (1990), pp.
1170-1173.

2. Bard, J.F. and Folk, J.E., An explicit solution to the multi-level programming problem,
Computers and Operations Research, 9 (1982), pp. 77-100.

3. Bard, J. F., An e~eient point algorithm for linear two-stage optimization problem, Opera-
tions Research, 31 (1983), pp. 670--684.

4. Bard, J. F. and Moore, J.T., A branch and bound algorithm]or the bilevel programming
problem, SIAM Journal on Scientific and Statistical Computing, 11(2) (1990), pp. 281-292.

5. Bialas, W.F. and Karwan, M.H., On two-level linear optimization, IEEE Transactions on
Automatic Control, AC-27(1) (1982), pp. 211-214.

6. Candler, W. and Townsley, R., A linear two-level programming problem, Computers and
Operations Research, 9 (1982), 59--76.

7. Glover, F., Tabu Search, Part I, ORSA Journal on Computing 1 (1990), pp. 190-206.
8. Clover, F., Tabu Search, Part II, ORSA Journal on Computing 2 (1990), pp. 4-32.
9. Hansen, P., The steepest ascent mildest descent heuristic]or combinatorial programming,

Congress on Numerical Methods in Combinatorial Optimization, Capri, 1986.
10. Hansen, P., Jaumard, B. and Savard, G., New branch-and-bound rules .for linear bilevel

programming, SIAM Journal on Scientific and Statistical Computing 13 (1992), pp. 1194-
1217.

11. Haurie, A., Savard, G. and White, D. J., A note on: An elffcient point algorithm]or a linear
two-stage optimization problem, Operations Research~ 38 (1990), pp. 553--555.

12. Jeroslow, R.G., The polynomial hierarchy and a simple model]or competitive analysis, Math-
ematical Programming, 32 (1985), pp. 146-164.

13. Jfidice, J. and Faustino, A., A sequential LCP method for bilevel linear programming, Annals
of Operations Research, 34 (1992), pp. 89--106.

14. Marsten, R.E., The design of the XMP linear programming library, Transactions on Mathe-
matical Software, 7(4) (1981), pp. 481-497.

15. Mathieu, R., Pit tard, L. and Anandalingam, G., Genetic algorithm based approach to bi-level
linear programming, R.A.I.R.O. Recherche OpSrationnelle, 28 (1994), pp. 1-21

16. Marcotte, P. and Savard, G., Novel approaches to the discrimination problem, Zeitschrift flir
Operations Research, 36 (1992), pp. 517-545.

17. Savard, G. and Gauvin, J., The steepest descent direction]or the nonlinear bilevel program-
ming Problem, Operations Research Letters, 15 (1994), pp. 265-272.

18. Vicente, L.N. and Calamai, P.H., Bilevel and multilevel programming: A bibliography review,
forthcoming in Journal of Global Optimization.

19. Vicente, L., Savard, G. and Jddice, J., Descent Approaches]or Quadratic Bilevel Program-
ming, Journal of Optimization Theory and Applications, 81 (1994), pp. 379-399.

