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A b s t r a c t .  T h e  l inear Bilevel P r o g r a m m i n g  P r o b l e m  (BLP)  is an  ins t ance  of a l inear hierarchi-  
cal decision process  where  t he  lower level cons t ra in t  set is d e p e n d e n t  on decis ions t aken  at  the  
uppe r  level. In th is  pape r  we propose  to solve th i s  N P - h a r d  p rob lem us ing  an adapt ive  search  
m e t h o d  re la ted to t he  T a b u  Search metaheur i s t i c .  Numer ica l  resu l t s  on large scale l inear  B L P s  
are presented.  

K e y w o r d s :  Bilevel p r o g r a m m i n g ,  adap t ive  search m e t h o d s ,  combina to r ia l  op t imiza t ion ,  T a b u  
Search 

1. I n t r o d u c t i o n  

In this paper we address the numerical solution of the linear bilevel problem (BLP) 
that  consists in finding vectors x and y maximizing the linear form clx + dly, under 
the constraint that  y be optimal for the lower level program 1 . 

m a x  d 2 z  
Z 

subject to A x + B z ~ b  

z > 0 ,  

where A is an m × n~ matr ix and B an m × ny matrix. The BLP is sometimes 
recorded in the following format: 

max c l x + d l y  
X 

max d2y 
Y 

subject to A x + B y < b  

x ,y  >_O. 

(1) 

The feasible region P = {(x, y)[Ax + By <_ b, x, y >_ 0} is, for simplicity, assumed 
to be nonempty and bounded. Upon introduction of the multifunction R(x) that  
associates to a vector x the set of optimal y-solutions to the lower level problem, 
i.e., 

R(x) = argmax{d2y[By < b -  Ax, y >_ 0}, 
Y 
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the BLP can be rewritten as 

max clx + dly 
z , y  

subject to A z + B y < b  

z > 0  

y e 

Some sets play an important role in the theory of bilevel programming. We 
denote by R the set of x-vectors for which the set R(x) is nonempty, and by D = 
{AB _> d2, A > 0} the feasible set associated with the dual of the lower level linear 
problem. Notice that D does not depend on the upper level vector x. The set 
{(z, y) 6 Ply 6 R(x)} is usually referred to as the induced region. 

This instance of a linear hierarchical problem was introduced by Candler and 
Townsley [6], Bard and Falk [2] and Bialas and Karwan [5], who solved small test 
problems. Jeroslow [12] showed that the BLP is NP-hard, while Vicente, Savard 
and Jfidice [19] proved that the problem of obtaining a certificate of local optimality 
for the BLP is also strongly NP-hard. Recently, Savard and Gauvin [17] proposed a 
method for finding a local descent direction for nonlinear bilevel programs. When 
applied to the BLP, the worst-case complexity of their algorithm is exponential, 
unless the polyhedron P is nondegenerate. Well-known problems in combinatorial 
optimization, such as the general linearly-constrained concave quadratic program- 
ming problem, or instances of hard mixed-integer problems, can be polynomially 
reduced to the BLP (see Hansen, Jaumard and Savard [10]). 

Recently, some hope of solving larger problems has been raised, following the 
works of Bard and Moore [4], Jfidice and Faustino [13] and Hansen, Jaumard and 
Savard [10]. The methods proposed by these authors (branch-and-bound, variable 
elimination, parametric complementarity pivoting) are of a combinatorial nature 
and yield exponential-time algorithms. One aim of the present paper is to extend 
the range of linear BLPs solvable to near-optimality by heuristic methods whose 
computational growth rate is low. The proposed methodology involves a local 
search akin to the Tabu Search introduced by Glover [7] [8] and under the termi- 
nology "steepest ascent, mildest descent", by Hansen [9]. The idea of using local 
search techniques for solving the BLP is not new. For example, Mathieu, Pittard 
and Anandalingam [15] have proposed an adaptation of the simulated annealing 
technique to the linear BLP. However, their approach could not address the large 
problem instances dealt with in the current paper. A good bibliographic survey 
of linear and nonlinear bilevel programming can be found in Vicente and Calamai 
[18]. 

A side result of our analysis is the development of a primal-dual startup procedure 
which performs exceptionally well. Frequently, the search phase could not improve 
on the initial solution produced by the startup procedure. Whenever this favorable 
situation occurred, we tried to check, using the exact algorithm of Hansen, Jaumard 
and Savard [10], whether this initial solution was optimal. In most cases, it was. 
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The paper is organized as follows: Section 2 is devoted to a description of the 
algorithm, including the s tar tup procedure; Section 3 presents extensive numerical 
tests; Section 4 concludes the paper. 

2. T h e  a l g o r i t h m  

The algorithm is composed of three main building blocks: a startup phase, designed 
to produce a good initial solution, a local ascent phase and a Tabu phase, whose 
aim is to move away from and improve on the current locally optimal solution, 
whenever possible. Each of these phases is described in more detail below. 

2 . 1 .  T h e  i n i t i a l i z a t i o n  p r o c e d u r e  

For a given x in R, a vector y is optimal for the lower level problem if and only if 
it satisfies, together with a dual vector ~: 

By  < b -  Ax  primal 
y _> 0 feasibility 

AB > d2 dual 
> 0 feasibility 

(AB - d2)y = 0 complementary 
A(b - A z  - By) = 0 slackness. 

If one substitutes to the lower level program the above primal-dual optimality 
conditions, one obtains the equivalent one-level formulation 

max clx + dly  
x,y~X 

subject to A x + B y < b  

x,y>_O 

AB > d2 

) , > 0  

(AB - d2)y = 0 

A(b - Ax  - By) = O. 

As in Anandalingam and White [1], we can penalize the complementari ty slack- 
ness terms to obtain the linearly constrained single-level program 

maxx,y,x clx + dly  - M[(AB - d2)y + A(b - Ax  - By)] 

-- clx + dly + Md2y - M.X(b - Ax)  

subject to Ax  + B y  < b (2) 
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AB > b2. 

x , y , A >  0 

Whenever M is sufficiently large, the penalty is exact in the sense that problem (2) 
and the original BLP (1) admit the same solution sets. If an optimal dual vector A 
were known a priori, (2) would reduce to a standard linear program. Our heuristic 
procedure estimates A in the simplest fashion by setting it, for a given upper level 
vector z, to an optimal dual solution of the lower level problem. The penalized 
problem is then solved with respect to the x and y-variables. If the resulting vector 
y is not in R(x), the penalty parameter M is increased, and the procedure repeated. 
The rationale behind this strategy is to generate a sequence of solutions converging 
to an (x, y)-solution that satisfies the condition y • R(x), while favoring the upper 
level's objective. This parametric scheme is reminiscent of Bard's efficient point 
algorithm [3] which solves the bicriterion problem 

max clx -b dly  -k Md2y  
~,y~0 

subject to A x q - B y ~ b  

for increasing values of the parameter M, until a rational point (~, y) with y in 
R(z) is identified. This program is akin to (2). However this strategy always keeps 
away from non Pareto-optimal maxima, either local or global (see Haurie, Savard 
and White [11] for a discussion of this topic). This is due to the absence of the 
correcting term M)~(b - Ax)  of (2), and may lead to bad feasible solutions. 

Our initialization algorithm, called Algorithm INIT, is described below: 

A L G O R I T H M  INIT  

Step 0: Select a parameter AM and set M to 0. 

Step 1: Let (x(M), y(M))  E argmax(~,y)ep {clx + dly --k M[d2y - A(M)(b - Ax)]} 

Step 2: Let A(M) • arg mince D {A(b - Ax(M))}. 

Step 3: i f d 2 y ( M )  - A(M)(b-  A z ( M ) )  = 0 t h e n  go to Step 4 
else set M = M + AM and GOTO Step 1. 

Step 4: Output the solution (x(M), y(M)) .  

At Step 2 of the algorithm, one solves the linear program 

[] 
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min d2y 
y 

subject to By <_ b -  Ax(M)  

y ~ 0 .  

and obtains an optimal primal solution y(x(M)) as well as the optimal dual vector 
),(M). 

Some variants of Algorithm INIT have been implemented, but proved less ef- 
fective, and were not retained. For instance, one could record the feasible solution 
( x ( i ) ,  y(x(M))) yielding the highest objective value c l x ( i ) + d l y ( x ( i ) ) .  This so- 
lution might not be the one corresponding to the highest (last) value of the penalty 
parameter M considered. One could also try, at a somewhat higher computational 
cost, to solve more accurately the bilinear program corresponding to a given value 
of the penalty parameter M. One should be aware, however, that this subproblem 
is theoretically as hard to solve as the original bilevel program, and that one should 
satisfy oneself with a local maximum. Such a local maximum could be obtained, 
for example, by iteratively solving linear programs with respect to the (x, y) and )~ 
vectors, h la Gauss-Seidel. 

The initialization phase is then completed by a local search step where pivots in 
(x, y)-space that improve the leader's objective while leaving y in the induced region 
R(x) are performed, until no (local) improvement can be found in this manner. This 
procedure could halt before a local maximum is actually identified, since degenerate 
pivots are not considered. If one demands that a local maximum be achieved, one 
should be ready to explore all neighbors of the current vertex, of which there could 
be exponentially many. 
R emark :  The lower level problem is generically highly degenerate. Indeed, the 
optimal solution of BLP occurs at an extreme point of P. Consequently, a basic 
solution vector y of the lower level problem must have at least k zero components, 
where k is the number of nonzero components of the upper level decision vector, 
including the slack variables associated with the constraints Ax -b By ~_ b. [] 

2.2. The  T a b u  phase 

The aim of the Tabu phase of the algorithm is, starting at a point (x °, y0) on the 
induced region, to determine another point (x +, y+) on the induced region such 
that 

clx + + dly + : ClX ° + dly ° 

(see Figure 1). The corresponding primal-dual nonconvex feasibility program is 

ClX + + d l y  + : clx °+ally ° 

Ax + + By + ~_ b 

x +,y+,A + > 0 (3) 
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A+B > d2 

A + ( b - A x  +) = d2y +. 
(~+, y+) # (~o, yo) 

If one introduces the gap function 

one can rewrite (3) as 

0 = global min 
xpy 

subject to 

g ( x ,  y) = max d2(z - y), 
z]Bz<b-Ax,z>O 

g(x, u) 

clx + dly = clx ° + dly  ° 

(~, y) ~ P 
(~, u) # (~o, uo). 

(4) 

Notice that, unless (x °, y0) is already globally optimal for BLP, there exists at least 
one solution to the system (3). The generic procedure is described below. 

A L G O R I T H M  T A B U  

Step 1: (moving away from the current solution (z °, y0)) 

Through a pivot sequence, generate a point (x ~, y~) that is 

(i) "far" from (x °, y0), and 
(ii) achieves a "high" value of the gap function g. 

Simultaneously record the relevant Tabu information. 

Step 2: (searching for a point in the induced region) 

Starting from (x', y'), try to solve the optimization problem (4) 
by performing a sequence of Tabu moves. 

[] 

Note that the Tabu algorithm, being a heuristic procedure, could fail to find a 
solution to (4), even if such a solution exists. 

At Step 1 of algorithm TABU, we first move to a randomly selected adjacent 
vertex (~, ~)) of (x °, y0) in the polyhedron 

p(xO, yO) = {(x,y) E PlClX + d l y  = clx ° + dly°}.  

Next we maximize the squared distance 
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x+y  
1 Ae oooo 

P ( x  O,yO) = [(x O,yO ) , (x  o ,yO)] 

Figure 1. The Tabu cut. 

II(x, - ( x 0   0)112 (..5) 

by performing one simplex step (pivot) for the linear program resulting from the 
linearization of the convex function (5) at, the point (2, Y) (Frank-Wolfe direction- 
finding linear program at (2, 9))- This process is repeated until a local max imum 
of (5) is reached. Since the distance function (5) is convex, this process generates 
a finite sequence of vertices of P(x °, yO). 

The Tabu methodology comes into play at Step 2 of the algorithm. Three types 
of Tabu tags are maintained throughout  this phase: Tabus on entering variables, 
Tabus on exiting variables and Tabus on pivots, i.e. pairs of entering and exiting 
variables. The  first, two sets of tags prevent the reversal of past  moves, while the 
third inhibits pivot repetitions. These Tabus remain active for a number of iter- 
ations generated randomly and unifornfly within the intervals [_01n, 01hi, [0-0out,0out] 
a n d  [0_piv~0piv] ~ respectively. 

Each iteration of the Tabu phase involves a move from a vertex of P(x °, yO) to an 
adjacent vertex by means of a pivot operation. Only a subset of possible moves is 
considered at each iteration: the candidate list is made up of the  kl most promising 
nonbasic variables obtained at the  previous iteration, and is completed by selecting 
k2 variables according to a cyclic management  scheme. Hence, at each iteration, 
the length of the candidate list is at most  k = kl + k2. For each of these variables, 
we compute a "merit score" defined as the sum of two terms: the gap value tha t  
would result if the pivot were actually implemented and a penalty factor related to 
the Tabu status of the corresponding move. For a pivot involving r as the entering 
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variable and s as the exiting variable, the penalty is given by the formula 

l-~(r, 8) -- CX([tin (r) -- t] + -b [tout (8) -- t] "{- -[- 2[tpiv(r, 8) -- t]+), 

where a is a penalty weight factor, whose value decreases from one to zero as the 
number of Tabu iterations already performed increases, t is the current iteration 
index, tin (r) the instant (iteration index) at which the variable r is to be removed 
from the entering variables Tabu list, tout(S) the instant at which the variable s is 
to be removed from the exiting variables Tabu list, tpiv(r, s) the instant at which 
the pair (r, s) is removed from the pivot Tabu list, and [. ]+ denotes the maximum 
function: 

[u] + = max(0, u). 

Note that, at the beginning of the Tabu step, the instants tin (r), tout (s) and tpiv (r, s) 
are set to zero for all indices r and s. 

While scanning the list of candidate pivots, the first (r, s) pivot that satisfies 
either of the following conditions is implemented: 

1. (r, s) is not Tabu and decreases the gap. 

2. (r, s) is Tabu and significantly decreases the gap (aspiration criterion). More 
precisely, (r, s) is implemented if the gap resulting from the (r, s) pivot is less 
than 

x current gap x 1 maxiter ' 

where "maxiter" is the maximum number of pivots allowed in the Tabu phase 
and t the current iteration index. 

According to standard Tabu Search terminology, this second condition is called an 
"aspiration criterion", in the sense that the Tabu status of a pivot can be overriden 
if this allows the search to reach a particularly promising solution. If no pivot 
meets the previous two requirements, then we select the pivot that  minimizes the 
previously defined merit score. 

If, during the Tabu phase, the starting point (x °, y0) is rediscovered, the parame- 
ters [~-in,~in], ~[-~ut,~out] and  [-~piv, ~piv] are increased, and the process restarted. In 
a symmetric fashion, if the gap value increases on two consecutive iterations, these 
parameters are decreased. 

Once the Tabu phase is successfully completed, we try to improve on (x +, y+), 
using the heuristic algorithm TINI, which is nothing else than a reverse implemen- 
tation of algorithm INIT, and is described below. 

If the Tabu phase fails to discover a solution to (4) within "maxiter" pivots, the 
overall procedure halts. 

A L G O R I T H M  T I N I  
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Step 0: Select a parameter AM. 
Set M to some suitably large value. 
Let A(M) be an optimal dual vector corresponding 
to the primal lower level vector (x +, y+). 

Step I: Let (x(M), y(M)) E arg max(~,y)ep {clz + ally --b M[d2y - A(M)(b - Az)]} 

Step 2: Let A(M) e arg minxeD {A(b - Az(M))}. 

Step 3: ifd2y(M) - A(M)(b- A~(M)) • 0 t h e n  go to Step 4 
else set M = M - AM and GOTO Step 1. 

Step 4: Output the feasible solution (x(M + AM), y(M q- AM)). 

[] 

At Step 0 of algorithm TINI, "suitably large" means that M is an exact penalty 
parameter or, in other words, any solution of the program (2) achieves a null gap 
value. Like algorithm INIT, algorithm TINI is completed by a local ascent proce- 
dure. 

The overall procedure is illustrated in Figure 2. 

3. Numer ica l  results  

The algorithm has been programmed in the FORTRAN language on a workstation 
HP730 operating under UNIX, and using Marsten's XMP linear programming code 
[14] for solving the linear subproblems encountered throughout. On the smaller 
problems, we could compare our algorithm against the exact algorithm of Hansen, 
Jaumard and Savard [10] programmed within the same computing environment. 
The exact algorithm of Hansen, Jaumard and Savard is currently one (if not "the") 
most efficient method for solving unstructured BLPs. 

Series of test problems with sizes ranging from 40 to 200 variables and 20 to 
200 constraints, with both medium sparse and dense matrix structures, have been 
solved. The problems were generated using a modification of Bard and Moore's 
generator [4] adopted in [10]. 

The results of the experiments are presented in Tables 1 to 6. In Tables 1 to 4 
the figures are averaged over groups of ten problem instances. 

The meaning of the column headings is given below: 
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INIT 

--q 

Local 
Ascent 

FAILURE 
TABU 

SUtCES 

TINI 

) STOP 

Local 
Ascent 

Figure 2. The hybrid Tabu-ascent algorithm 
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Table l. Influence of the parameter "maxiter" 

Problem parameters 
n~ = 50 n u = 55 

m = 42 DENS=I.0 
_O= 11 ,~=  15 
kl ---- 10 k = 55 

maxiter NSUC NOPT WORST AVERAGE CPU1 CPU2/CPU1 

55 3 6 97.59 99.37 12.82 22.88 
110 6 7 98.16 99.71 28.70 10.22 
220 6 9 98.00 99.80 64.16 4.57 

HTA: 
EXACT: 

ny: 

m:  

DENS: 
~: 

maxiter: 
NSUC: 
NOPT: 
WORST: 
AVERAGE: 
CPU0: 

CPUI: 
CPU2: 
k: 

kl: 

OBJ: 
OBJ0: 

HEUR: 

UPPER: 

hybrid tabu-ascent algorithm 
exact algorithm HJS 
number of upper level variables 
number of lower level variables 
number of constraints 
density of the constraint matrix [A [ B] 
common value of the parameters 0_in , 0_out, _0pi v 
common value of the parameters 0in, 0out, Opiv 
maximum number of iterations allowed in each Tabu phase 
number of successful Tabu phases 
number of problems solved to optimality 
worst heuristic-to-optimal ratio 
average heuristic-to-optimal ratio 
CPU time associated with algorithm INIT 
(including local search phase) 
CPU time associated with the hybrid Tabu-ascent algorithm 
CPU time associated with the exact algorithm HJS 
length of the list of candidate variables, sorted 
with respect to their respective merit scores 
number of most promising variables kept from the previous 
iteration in Tabu phase 
value of first level objective 
value of first level objective achieved by algorithm INIT 
(including local ascent phase) 
value of first level objective computed by HJS's initialization 
procedure 
initial upper bound on the first level objective. 

The numerical experiments were conducted in two stages. We first performed a 
series of tests to determine good values for the various parameters involved in the 
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Table 2. Influence of the parameter  k 

Problem parameters 
n~ = 50 n~ = 55 

m = 42 DENS=I.0 
_0= 11,~= 15 

kl = 10 maxiter=ll0 

k NSUC NOPT WORST AVERAGE CPU1 CPU2/CPU1 

27 3 5 97.59 99.20 16.85 17.41 
55 6 7 98.16 99.71 28.70 10.22 

105 4 6 97.84 99.43 39.99 7.33 

Tabu phase of the algorithm. Problems with 50 upper level variables, 55 lower level 
variables, 42 constraints and density of 100% were used for these tests. These are 
difficult problems that are encountered in some practical situations; for instance, 
the BLP formulation of the nonparametric discriminant analysis problem leads to 
100% dense constraint matrices (see Marcotte and Savard [16]). 

In algorithm INIT, we observed that the penalty became exact for values of M 
ranging from 2 to 45. In algorithm TINI, the parameter M was initially set to 5, and 
increased by increments of .5 until the penalty became exact. In both algorithms, 
the value of AM was set to .5. 

In Table 1 we assess the influence of the parameter "maxiter" on the performance 
of the algorithm. As expected, the quality of the solution improves as "maxiter" and 
CPU1 increase. However, it can be observed that increasing "maxiter" above the 
value 110 (twice the number of second level variables) led to minute improvements 
in the solution, while considerably increasing the computing time. In subsequent 
tests, "maxiter" has been set equal to twice the number ny of lower level variables. 

Some tests have also been conducted to determine a strategy for restricting the 
number of pivots to be considered. We introduced two parameters: (i) k governs 
the number of variables kept from the previous Tabu iteration, sorted with respect 
to their merit scores; (ii) ki controls the number of variables from the previous list 
of k variables to be evaluated in priority as entering variables. For each of these 
two parameters, 3 different values were considered. The results are shown in Tables 
2 and 3. Based on these results, the values k = ny and kl = 10 have been retained. 
Note that the algorithm is quite insensitive to the value of the parameter kl. Also, 
it proved unproductive to use the full list of variables; indeed, as k was increased 
from 55 to 105, the computing time increases and the solution deteriorates. 

We also conducted a sensitivity analysis on the length of the Tabu list. The 
results are quite insensitive to this parameter. This behavior may be explained by 
the self-adjustment of this parameter and the use of an aspiration criterion. 
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Table 3. Influence of the parameter  kl 

Problem parameters 
n= = 50 ny = 55 

m = 42 DENS=I.0 
_8= 1 1 , 8 =  15 

k -- 55 maxiter=110 

kt NSUC NOPT WORST AVERAGE CPU1 CPU2/CPU1 

0 5 7 98.15 99.71 31.90 9.20 
10 6 7 98.16 99.71 28.70 10.22 
20 4 6 97.59 99.37 26.39 11.12 

The main results are presented in Table 4, where we observe that the computing 
time CPU1 of our algorithm increases superlinearly with respect to the size of 
the problem, albeit at a much slower rate than the computing time CPU2 of the 
exact procedure HJS. With the exception of the smaller problems, CPU1 is much 
smaller than CPU2. An exact solution was obtained by the hybrid Tabu-ascent 
algorithm in 184 out of 250 problems, corresponding to a success rate of 73.6%. 
Even more impressive in our opinion is the fact that the relative error was, on the 
average, inferior to .5% and that it was very seldom superior to 5%. All these 
results were achieved in computing times 6 to 20 times faster than those of the 
exact algorithm on all but the smallest test problems. In several instances, the 
initialization algorithm INIT produced an optimal solution. In the next-to-last 
series of test problems, the performance of our algorithm is actually superior (!) 
to that of the exact algorithm. This is due to one extremely nasty instance of a 
70 × 70 problem, which had to be halted when CPU2 exceeded the time limit value 
set to 15 000 seconds. 

Table 5 contains a detailed account of the series corresponding to the parameters 
n~: -- 60, ny = 65, m = 50 and DENS= .4. The aggregated results for this 
series have previously been presented at line - 4  of table 4. In five instances, the 
best solution was achieved at the end of the initialization phase, and two of these 
solutions are optimal. In the other five problems, where the Tabu phase actually 
improved upon the initial solution, the optimal solution was reached. In the two 
cases where the exact algorithm's computing time CPU2 was inferior to CPU1, 
algorithm INIT produced either an optimal or a near optimal (within .03% from 
optimality) solution. The computing times of algorithm INIT are reported in the 
3rd column of Table 5. These figures are very low, except for the 4th instance, 
where the lower level problem was highly degenerate. Finally we notice that the 
coefficient of variation of the computing time CPU1 is very small, confirming the 
stability of the algorithm. 
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Table 4. Main results. 

Problem parameters 
e =  [ny/5] 8 = 8 + 4  

kl = 10 k = ny maxiter=2ny 

n, ny m DENS maxiter NSUC NOPT WORST AVERAGE CPUl CPU2 
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Table 5. Detailed results.  

Problem parameters 
n~ = 60 ny = 65 

m = 50 DENS=0.4 
0__ = 13 0 = 17 

kl = 10 k = 65 maxiter=130 

HTA EXACT 
OBJ0 CPU0 NSUC OBJ CPU1 HEUR UPPER OBJ CPU2 

1 60.63 10.11 0 60.63 62.93 33.11 61.62 60.63 338.63 
2 75.85 3.43 0 75.85 67.76 37.05 82.12 76.17 1257.61 
3 75.16 5.20 2 76.38 96.97 39.96 81.61 76.38 793.65 
4 64.17 80.08 1 65.28 142.84 33.65 68.10 65.28 579.28 
5 79.00 7.64 1 79.93 54.95 63.25 82.14 79.93 551.09 
6 79.47 1.79 0 79.47 31.07 43.05 79.84 79.47 6.00 
7 62.24 3.53 1 62.26 81.79 44.71 62.38 62.26 47.27 
8 84.18 8.95 0 84.18 52.75 34.82 91.15 85.20 11350.11 
9 71.53 5.96 1 71.97 57.29 49.69 75.01 71.97 115.76 
10 85.18 1.39 0 85.18 50.28 63.14 90.88 86.92 1959.94 

Our last table (Table 6) contains the results of experiments performed on 10 large 
problems, for which a time limit of one hour computing time was imposed on the 
exact algorithm HJS. In all but one instance, the hybrid Tabu-ascent procedure 
generated the best solutions, in less than 13 minutes. In the other instance (9th 
problem), the solution values where identical, and the running times very similar. 
In five instances, the best solution was obtained at the end of the initialization 
phase, thus confirming the exceptional behavior of algorithm INIT completed by 
the local search phase. 

4. Conc lus ions  

In this paper we presented a hybrid Tabu Search-ascent heuristic for the approxi- 
mate solution of large linear bilevel programs. This method performed very well on a 
large set of difficult test problems involving up to 200 variables and 200 constraints. 
Optimal solutions were identified for the vast majority of these, and relative errors 
were on the average extremely small. The computing times of the algorithm proved 
to be low and stable, from one problem to the other. 

An integral part of our algorithm is the primal-dual startup procedure INIT, 
which performed beyond our expectations. Actually, INIT produced optimal or 
near-optimal solutions in many cases. On the other hand, the Tabu phase of the 
algorithm was successful in achieving its stated aim, that is, improving upon nonop- 
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Table 6. Results on large problems. 

Problem parameters  
n~ = 90 n~ = 100 

m = 76 DENS=0.25 
_0 = 2 0 0 = 2 4  

kl -- 10 k = 100 maxi ter=200 

H D T  EXACT 
# OBJ0 NSUC OBJ CPU1 HEUR U P P E R  OBJ CPU2 

1 78.72 1 78.92 453.32 60.01 81.41 77.73 3600.00 
2 118.02 0 118.02 274.72 89.28 118.37 116.67 3600.00 
3 98.36 0 98.36 200.36 46.24 110.23 95.91 3600.00 
4 80.96 0 80.96 331.11 53.00 89.91 77.87 3600.00 
5 71.37 1 71.42 358.74 59.04 72.70 71.42 3600.00 
6 92.85 1 96.90 752.22 68.03 100.87 93.17 3600.00 
7 69.14 1 70.15 604.44 31.68 73.07 69.54 3600.00 
8 92.54 0 92.54 183.21 60.41 94.40 80.50 3600.00 
9 92.99 0 92.99 257.59 83.62 93.59 92.99 228.21 
10 120.01 1 122.55 679.77 82.58 124.77 107.70 3600.00 

t imal  initial solutions. In most  cases where the s tar tup  procedure did not find an 
opt imal  solution, the Tabu phase did. 

Our results clearly demonstra te  that  hybrid methods combining ascent and Tabu 
procedures can efficiently address difficult nonconvex or combinatorial  opt imizat ion 
problems such as the linear bilevel p rogramming problem. I t  now remains to assess 
the capabil i ty of our approach to tackle other classes of problems with similar 
structures. In particular,  we want to consider bilinear bilevel programs of the form 

m a x  Tx  
T 

min (c + T)x  + dy 

Ax  + By  >_ b, 

which arise in the context of opt imal  pricing of commodities.  

N o t e  

1. Throughout the paper, left vectors (cost coefficients and dual vectors) are assumed to be row 
vectors while right vectors (resource coefficients and primal vectors) are assumed to be column 
vectors, thus eliminating the need for the transposition symbol. 
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